Tryptophan and Kynurenic Acid May Produce an Amplified Effect in Central Fatigue Induced by Chronic Sleep Disorder
نویسندگان
چکیده
Tryptophan (TRP) and its neuroactive metabolite, kynurenic acid (KYNA), are thought to play key roles in central fatigue, but the specifics are still unknown. To clarify their roles in the brain, we developed a rat model of central fatigue induced by chronic sleep disorder (CFSD) by disturbing the sleep-wake cycle. Results showed that while 5-hydroxytryptamine (5-HT) concentration did not differ between control and CFSD groups, levels of TRP and KYNA in the CFSD group were about 2 and 5 times higher in the hypothalamus, and 2 and 3.5 times higher in the hippocampus, respectively. Moreover, CFSD-induced fatigue led to abnormal running performance (via treadmill test) and social interaction (via social-interaction test). These results support a TRP-KYNA hypothesis in central fatigue in which increased TRP concentration in the brain and subsequently synthesized KYNA may produce an amplified effect on central fatigue, with enhanced concentrations being a possible mechanism by which social-interaction deficits are generated.
منابع مشابه
P 78: The Role of Kynurenine Pathway in Suicidal Behavior and Depression
According to global statistics, over 80,000 deaths occur by suicide annually. Up to 90% of complete suicides are based on psychiatric disorders specifically major depressive disorder (MDD) and bipolar disorder. Furthermore high levels of inflammation have been indicated in suicidal patients in both central nervous system and the peripheral blood. Two biological mechanisms that play a key role i...
متن کاملInteractions of Tryptophan and Its Catabolites With Melatonin and the Alpha 7 Nicotinic Receptor in Central Nervous System and Psychiatric Disorders: Role of the Aryl Hydrocarbon Receptor and Direct Mitochondria Regulation
Recent work indicates an intimate interaction of the tryptophan catabolite (TRYCAT) pathways with the melatonergic pathways, primarily via TRYCAT pathway induction taking tryptophan away from the production of serotonin, which is a necessary precursor for the melatonergic pathways. The alpha 7 nicotinic receptor may be significantly modulated by this interaction, given its inactivation by the T...
متن کاملThe effect of L-tryptophan on daytime sleep latency in normals: correlation with blood levels.
L-Tryptophan, an essential amino acid, is readily converted to serotonin, which is thought to be important for expression of slow wave sleep and possibly rapid eye movement (REM) sleep. A vast but often confusing literature exists on L-tryptophan effects on inducing, maintaining, or altering sleep. In this study we measured the effects of L-tryptophan on objective (multiple sleep latency) and s...
متن کاملKynurenic acid protects against the homocysteine-induced impairment of endothelial cells.
Kynurenic acid (KYNA) is a tryptophan metabolite produced in the kynurenine pathway. In the central nervous system, KYNA exerts neuroprotective and anticonvulsant effects by mechanisms associated with its antagonist activity against the ionotropic glutamate and alpha-7 nicotinic receptors. Its presence has been documented not only in cerebrospinal fluid and brain tissue, but also in the periphe...
متن کاملQuinolinate-induced cortical cholinergic damage: modulation by tryptophan metabolites.
Certain products of tryptophan metabolism interact with excitatory amino acid receptors to produce or protect against excitotoxicity. In this study, the action of several tryptophan metabolites, yielded by the kynurenine pathway, on cortical cholinergic toxicity was evaluated following focal injection into the rat nucleus basalis magnocellularis (nbM). Metabolites were injected singly or in com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2014